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Deterministic dynamics in the minority game

P. Jefferies, M. L. Hart, and N. F. Johnson
Physics Department, Clarendon Laboratory, Oxford University, Oxford OX1 3PU, United Kingdom

~Received 13 March 2001; published 11 December 2001!

The minority game~MG! behaves as a stochastically disturbed deterministic system due to the coin toss
invoked to resolve tied strategies. Averaging over this stochasticity yields a description of the MG’s determin-
istic dynamics via mapping equations for the strategy score and global information. The strategy-score map
contains both restoring-force and bias terms, whose magnitudes depend on the game’s quenched disorder.
Approximate analytical expressions are obtained and the effect of ‘‘market impact’’ is discussed. The global-
information map represents a trajectory on a de Bruijn graph. For small quenched disorder, a Eulerian trail
represents a stable attractor. It is shown analytically how antipersistence arises. The response to perturbations
and different initial conditions is also discussed.

DOI: 10.1103/PhysRevE.65.016105 PACS number~s!: 02.50.Le, 05.40.2a, 87.23.Ge, 01.75.1m
-
nt
oa
ar
tin
ica
a

r-

t
gl
ys
nc

er
am
m
m

p
rta
fly
.
o

I
p

dd
se

ib
e
rit
v

nt is
ot

s in
ated

ller

e of

st
re-
r-

an
irre-
re-
re is
er to
f

to
to

a
gies
nto
ted.

ve
nts
re-
l-

t
rder
I. INTRODUCTION

The minority game~MG! introduced by Challet and
Zhang@1# offers possibly the simplest paradigm for a com
plex, dynamical system comprising many competing age
Models based on the minority game concept have a br
range of potential applications, for example, financial m
kets, biological systems, crowding phenomena, and rou
problems@2#. There have been many studies of the statist
properties of the MG@1–4,6–15#, which treat the game as
quasistochastic system.

In this paper we examine the MG from a different pe
spective by treating it as a primarilydeterministicsystem and
then exploring the rich dynamics that result. Our desire
look at microscopic dynamical properties, as opposed to
bal statistics, is motivated by the fact that the physical s
tems we are interested in modeling are only realized o
~e.g., the time evolution of a financial market!. Only limited
insight is therefore available from taking configuration av
ages in such cases. In addition it is of great interest to ex
ine transient effects such as the response of the syste
perturbations and the mechanisms that determine the ga
trajectories in time. We find that we are able to provide
description of the resulting deterministic dynamics via ma
ping equations, and can hence investigate these impo
effects. The outline of the paper is as follows: after brie
discussing the MG in the remainder of this section, Sec
examines the MG as a functional map. Section III focuses
the effect of the underlying~‘‘quenched’’! disorder arising
from unequal population of the strategy space. Section
discusses the dynamics of the game on a de Bruijn gra
Section V provides the conclusions.

The most basic formulation of a MG comprises an o
number of agentsN who at each turn of the game choo
between two options ‘‘0’’ and ‘‘1’’@1,2#. These options could
be used to represent buy/sell, choose roadA/roadB, etc. The
aim of the agents is common: to choose the least subscr
option, the ‘‘minority’’ group. At the end of each turn of th
game, the winning decision corresponds to the mino
group and is announced to all the agents. The agents ha
memoryof m bits, hence they can recall the lastm winning
decisions. Theglobal informationm available to each and
1063-651X/2001/65~1!/016105~8!/$20.00 65 0161
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every agent is therefore a binary wordm bits long, hencem
belongs to the set$0,1, . . . ,P21% whereP52m. In order to
make a decision about which option to choose, each age
allotteds strategiesat the outset of the game, which cann
be altered during the game. Each strategyR maps every pos-
sible value of m to a prediction aR

mP$21,1%, where

21⇒(option 0) and 1⇒(option 1). There are 22
m

different
possible binary strategies. However, many of the strategie
this space are similar to one another, i.e., they are separ
by a small Hamming distance. It has been shown@3# that the
principle features of the MG are reproduced in a sma
reduced strategy space~RSS! of 2m11 strategies, in which
any two strategies are separated by a Hamming distanc
2m or 2m21, i.e., the two strategies areanticorrelated or
uncorrelated, respectively.

The agents follow the prediction of their historically be
performing strategy. They measure this performance by
warding strategies with the correct mapping of global info
mation to winning decision and penalizing those with
incorrect mapping. Strategies are scored in this manner
spective of whether they are played. As each agent will
ward and penalize the same strategy in the same way, the
a common set of strategy scores that are collected togeth
form thestrategy-score vector SI . The common perception o
a strategy’s success or failure will lead to agents deciding
use or avoid the same strategy in groups—this leads
crowd behavior as analyzed in Refs.@4,6#.

II. MG AS A FUNCTIONAL MAP

The minority game is often introduced heuristically as
set of rules determining the update of the agents’ strate
and the global information. It can however easily be cast i
a functional map, which reproduces the game when itera
Moreover, this functional map can be iteratedwithouthaving
to keep track of the labels for individual agents. We achie
this by introducing a formalism that groups together age
who hold the same combination of strategies, and hence
spond in an identical way to all values of the globa
information set m5$0,1, . . . ,P21%. This grouping is
achieved via the tensorV= , which is initialized at the outse
of the game and quantifies the particular quenched diso
©2001 The American Physical Society05-1



s

ro

a

f
t

te
in
m
s

o
eg

ie
is
e
a
c
ul
to

e

ing

G

ep,
en

-
I

We
ible

the
tem
e-

ten-
ll
hus
hen

,’’

ing
me

he
the
est
tic
Eq.

m
gies.
Sta-

P. JEFFERIES, M. L. HART, AND N. F. JOHNSON PHYSICAL REVIEW E65 016105
for that game@4#. V= is s dimensional with rows and column
of length 2P ~in the RSS! such that entryV= R1 ,R2 ,... is the

number of agents holding strategies$R1 ,R2 ,...%. The entries
of V= ~and also of the strategy-score vectorSI ! are ordered by
increasing decimal equivalent. For example, strategies f
the RSS form52 are ordered$0000, 0011, 0101, 0110, . . . %,
therefore strategyR is anticorrelated to strategy 2P112R.
V= is randomly filled with uniform probability such that

(
R,R8,...

V= R,R8,...5N.

It is useful to construct a configuration of this tensor,C= ,
which is symmetric in the sense thatC= $R1 ,R2 , . . . %

5C= p$R1 ,R2 ,...% , where p$R1 ,R2 ,...% is any permutation of

strategiesR1 ,R2 ,... . Fors52 we letC= 5 1
2 (V= 1V= T) @16#.

Now we proceed to a formula for the attendanceA of the MG
~i.e., the sum of all the agents’ predictions and hence
tions!,

A5aI m
•nI 5 (

R51

2P

aR
mnR , ~1!

whereaR
m is the response of strategyR to global information

m andnR is the number of agents playing strategyR. We can
definenR in terms of the strategy-score vectorSI andC= and
hence rewrite Eq.~1! to give the following fors52:

A~SI ,m!5 (
R51

2P

aR
m (

R851

2P

@11sgn~SR2SR8!#C= R,R8

1 (
RÞR8

2P

aR
mdSR ,SR8

~bin@2C= R,R8 , 1
2 #2C= R,R8!,

~2!

where bin@n,p# is a sample from a binomial distribution o
n trials with probability of successp. Here the constrain

bin@2C= R,R8 , 1
2 #1bin@2C= R8,R8

1
2 #52C= R,R8 applies in order

to conserve agent number. The second term of this at
dance equation@Eq. ~2!# introduces a stochastic element
the game; it corresponds to the situation where agents
have several top scoring strategies and must thereby to
coin to decide which to use. We note that Eq.~2! could be
rewritten replacing the sgn function with tanh. The effect
this would be to make the number of agents playing strat
R1 ~as opposed to their other strategyR2! vary smoothly as a
function of the separation in the score of the two strateg
rather than simply playing the best. This modification
similar in concept to that of the thermal minority gam
~TMG! @8,9# wherein agents play their best strategy with
certain probability depending on its score. The differen
here would be that, in contrast to the TMG, the system wo
still be entirely deterministic, hence lending itself readily
similar analysis as presented here.

With this formalism, the game can be described concis
by the following coupled mapping equations:
01610
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SI ~ t !5SI ~ t21!2aI m~ t21!x~A„SI ~ t21!,m~ t21!…!, ~3!

m~ t !52m~ t21!2PHXm~ t21!2
P

2 C
1H~2A„SI ~ t21!,m~ t21!…!, ~4!

whereH(x) is the Heaviside function andx(A) is a mono-
tonic, increasing function of the game attendance quantify
the particular choice of reward structure~i.e., payoff!. In
most of the MG literaturex(A)5sgn(A) or x(A)5A @7#.
Although the macroscopic statistical properties of the M
are largely unaltered by the choice ofx, we later demonstrate
that the microscopic dynamics can be affected markedly.

This formulation shows that the MG obeys a one-st
stochastically disturbed deterministic mapping betwe
states$SI (t),m(t)% and $SI (t11),m(t11)%. It is interesting
to ask the following question: ‘‘How important is the sto
chastic term of Eq.~2! to the resultant dynamics?’’ Table
shows the frequency with which the outcome@sgn(2A)# is
changed by the stochastic disturbance to the mapping.
can see that the stochastic term has a small but nonneglig
effect on the game. For the strategy reward systemx5sgn,
the number of instances of coin tossing agents affecting
outcome is greater than with the proportional reward sys
of x51. This is easily understood in terms of the homog
neity of the score vectorSI ; the x5sgn scoring system is
much more likely to generate tied strategies than thex51
system, which also incorporates the dynamics of the at
danceA. Therefore, in thex5sgn scoring system there wi
be a much higher proportion of coin tossing agents and t
a greater effect on the game. We pause here to note that w
the MG is modified to include a decaying ‘‘score memory
i.e., when Eq.~3! is modified to

SI ~ t !5bSI ~ t21!2aI m~ t21!x~A„SI ~ t21!,m~ t21!…!,

where 0,b,1, then the chance of strategy scores be
equal rapidly tends to zero with time and hence the ga
automatically can become completely deterministic.

The general effect of the stochastic contribution to t
MG is to break the pattern of behavior emergent from
deterministic part of the map. It is therefore of great inter
to examine further what the dynamics of this determinis
behavior are. To do this we replace the stochastic term of
~2! by its mean. The equation thus becomes@AD(SI ,m) in
Ref. @13##,

TABLE I. Percentage of time steps in which the minority roo
is changed by the stochastic decision of agents with tied strate
Percentages are shown for the digital and proportional payoffs.
tistics obtained from 16 numerical runs of the MG withN5101,
s52, and over 1000 time steps.

m x5sgn x51

2 7.264.2 0.760.6
3 6.363.0 2.460.8
4 9.462.1 3.460.8
5-2
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DETERMINISTIC DYNAMICS IN THE MINORITY GAME PHYSICAL REVIEW E 65 016105
A~SI ,m!5 (
R51

2P

aR
m (

R851

2P

@11sgn~SR2SR8!#C= R,R8 . ~5!

Physically this replacement is an averaging process; w
SR1

5SR2
we have half the agents who hold$R1 ,R2% playing

R1 and the other half playingR2 @17#. Equations~3!, ~4!, and
~5! now define a deterministic map, which replicates the
havior of the MG between disturbances caused by the c
tossing agents; we refer to this system as the ‘‘determini
minority game’’ ~DMG!. We will now use this system to
investigate the emergence of microscopic and macrosc
dynamics.

III. DISORDER IN C=

The game is conditioned at the start with the initial st
$SI (0),m(0)%. It is also given aC= tensor for a particular
parameter setN,m,s. The game’s future behavior will be in
herited fromC= ; games with sparsely and densely filled te
sors hence behave in entirely different ways. By assum
that each entry ofV= is an independent binomial samp
V= R1 ,R2

5bin@N,1/(2P)2#, we may categorize the disorder

theV= tensor by the standard deviation of an element divid
by its mean size. Fors52, this gives

s~V= R1 ,R2
!

m~V= R1 ,R2
!

5A~2P!221

N
,

which rapidly becomes large asm increases. For lowm and
high N, the game is said to be in an ‘‘efficient phase’’@2#
where all states of the global-information setm are visited
equally and hence, on average, there is no drift in the s
egies’ scores, i.e.,̂SR& t50. In this regime, the disorder in
theV= tensor is small and thus all elements are approxima
of equal magnitude. This in turn implies that the dynamics
the game are dominated by the movement ofSI rather than by
the asymmetry ofV= . The attendance of the (s52) game
here reduces to

A~SI ,m!'
N

4P2 (
R51

2P

aR
m (

R851

2P

sgn~SR2SR8!. ~6!

The second sum in Eq.~6! corresponds to a quantityqR ,
which is based on the rank of strategyR; specifically qR
52P1122rR , where rR is the rank of strategyR, with
rR51 being the highest scoring andrR52P being the low-
est scoring. Hence Eq.~6! becomes

A~SI ,m!'
N

4P2 aI m
•qI . ~7!

We now examine the increment in strategy score,dS(t)
5SI (t)2SI (t21). For simplicity, we here assume the propo
tional scoring system ofx51. Hence

dS52aI mA~SI ,m!'2
N

4P2 aI m~aI m
•qI !.
01610
n

-
in
ic

ic

e

-
g

d

t-

ly
f

If we average over uniformly occurring states ofm, we then
have for each strategy

^dSR&m'2
N

4P2 (
R851

2P

^aR
maR8

m &mqR8 .

We now use the orthogonality of strategies in the RSS,

1

P (
m

aR1

m aR2

m H 0 for R1ÞR2 ,

1 for R15R2 ,

21 for R25R̄1 .

This yields

^dSR&m'
N

2P2 $rR2r R̄%, ~8!

where R̄52P112R is the anticorrelated strategy toR.
Equation~8! now shows us explicitly that strategies and th
anticorrelated partners attract each other in pairs. The m
nitude of the score increment is also of interest; for lowm
and highN the attractive force is large, which will cause th
strategies to overshoot each other and thus perform a
stant cycle of swapping positions. As we increasem or de-
creaseN, the attractive force becomes weaker and so
score cycling adopts a longer time period; it eventually b
comes too weak to overcome the separate force arising f
the asymmetry inC= . Hence the system moves away fro
the strongly mean reverting behavior inSI .

We can investigate this change of regime further by
amining^dSR&m for finite disorder inC= ~see note on validity
of averaging@18#!. Again using the orthogonality of strate
gies in the RSS, we have

^dSR&m5dSR
bias1dSR

restoring

52 (
R851

2P

~C= R,R82C= R̄,R8!, ~9!

2 (
R851

2P

@sgn~SR2SR8!C= R,R8

1sgn~SR1SR8!C= RI ,R8#. ~10!

Equation ~9! has two distinct contributions. The first term
dSR

bias arises from disorder inC= alone and is time indepen
dent, representing a constant bias on the score increm
The second termdSR

restoringacts as a mean reverting force o
the strategy score; its magnitude depends on how many s
egies lie between it and its anticorrelated partner@just as in
Eq. ~8!#. Figure 1 illustrates this for a case whereSR.0;
here the net contribution todSR

restoringis likely to be negative
as there are more contributing elements with a negative
than with a positive sign. The strategiesR8{2uSRu,SR8
,uSRu always contribute terms2sgn(SR)(CR,R81CR̄,R8) to
dSR

restoringand so will always act as a mean reverting comp
nent. Terms from strategies outside this range will always
divided into equally sized positive and negative groups
5-3
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shown in Fig. 1. These groups will on average cancel
each other’s effect on the score increment.

We can model the average magnitude of each term in
~9! by using the same binomial representation for the e
ments ofV= as before. The mean magnitude of the bias a
restoring-force termŝ udSR

biasu&R and Š^udSR
restoringu&SR

‹R are
thus approximately given as follows:

^uSR
biasu&R'A~N/Pp!@121/~2P!2#,

Š^udSR
restoringu&SR

‹R'
Ng

4P2 . ~11!

The termg enumerates the average net number of term
dSR

restoringthat act to mean revertSR , i.e., the excess numbe
of terms with negative sign,2sgn(SR). Averaged over the
entire set of strategies, we haveg52P. Figure 2 shows tha
our approximate form for the average strategy score bia
Eq. ~11! is extremely good over the entire range ofa
5P/N whereas the approximation of the restoring-for
term becomes progressively worse asa is increased. This
effect can be explained in terms of the ‘‘market impact’’ of
strategy. The greater the number of agents using a stra

FIG. 1. Schematic representation of the signs of contribut
terms todSrestoring.

FIG. 2. Numerical and approximate analytical magnitude of
erage score increment terms^udSR

biasu&R andŠ^udSR
restoringu&SR

‹R
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nR , the greater its contribution is to the attendance as can
seen from Eq.~1!. As nR is increased abovenR8ÞR , the
probability of the game outcome@2sgn(A)# being opposed
to aR

m becomes greater and hence strategyR being penalized
is also more probable. This effect will arise if the quench
disorder inC= is such that more agents hold strategyR than
R8ÞR. As a is raised and the quenched disorder inC=
grows, this effect will become increasingly important. Hen
it can be seen thatC= R,R8 and$SR ,SR8% are not independen
as assumed in obtaining Eq.~11!, but are instead correlate
through the effect of market impact; this correlation becom
more significant asa is increased.

The nature of the correlation betweenC= R,R8 and
$SR ,SR8% introduced by market impact is nontrivial in form
as can be seen from Fig. 3. We will not discuss the detail
an analytic reconstruction ofC= r,r8 here, but will instead
simply note some straightforward constraints on its form. L
us take the approximation that on average, the ranking of
strategies$rR% is given by the ranking of their bias term
$dSR

bias%. This will be trueon averagefor a system described
by Eq. ~9!. We then use the approximation thatdSR

bias

;N@0,A(N/2P)(121/4P2)#. Ordering the bias terms, re
sulting from samples drawn from this distribution, gives
that C= r,r8 satisfies

ErfS ^dSr
bias&

A@N/P#@121/4P2#
D 5

P2r

P
,

with dSr
bias given by2(r851

2P (C= r,r82C= r̄,r8), as in Eq.~9!.
This relation gives us an indication of how the rank of
strategy is affected by its excess population, and is consis
with the form ofC= r,r8 as shown in Fig. 3. Note that in th
absence of market impact we would not be able to w

g

-

FIG. 3. Contour plot of̂ C= r,r8&, i.e., an average of the strateg
population tensor reordered each turn with strategies running f
highest to lowest score~top to bottom and left to right!. Black areas
indicate low population and white areas indicate high populati
The averaging is carried out over 50 runs~different V= ! and 1000
turns within each run. MG game parametersa50.32,s52.
5-4
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DETERMINISTIC DYNAMICS IN THE MINORITY GAME PHYSICAL REVIEW E 65 016105
down any equation linking these parameters and Fig
would be flat with no structure.

We have thus shown how market impact is profoun
manifest within the structure of the MG@1#. In particular,
Fig. 2 shows clearly that consideration of market impac
necessary in the calculation of the transition point from e
cient to inefficient regimes@1#. The game enters the ineffi
cient regime if the magnitude of the bias term to the sc
increment~arising from disorder inC= ! exceeds the magni
tude of the restoring-force term. We can calculate when
average strategies begin to drift by looking at wh
^udSR

biasu&R5Š^udSR
restoringu&SR

‹R in Eq. ~11!. This occurs near

a5ac'p/4. This overestimation of the transition poin
~which numerically occurs in the DMG at aroundac50.39!
could be corrected by taking into account the nonflat str
ture of C= r,r8 . We would like to stress here that only o
average does there exist a specific point at which the g
passes from mean reverting to biased behavior~efficient to
inefficient regime!. Because the behavior of the game is d
tated by the disorder inV= and not just by the specific param
etersN,m,salone, a knowledge ofa is not enough informa-
tion to classify the game as being in either the efficient
inefficient regime. The value ofac cannot therefore be con
sidered a ‘‘critical’’ value in this system away from the the
modynamic limit of largeN andP.

Equation~9! can also yield insight into the dynamics
the regime past the transition point. We were able to pre
from Eq. ~8! that in the efficient regime, pairs of anticorre
lated strategies would cycle around each other thus pro
ing an everchanging score rank vectorrI . In the inefficient

regime wherein the strategy scores have appreciable bia
would be natural to assume thatrI would rapidly find a

steady state as the strategy scores diverged. This in fact
not happen; for example, consider the outermost pair of s
egies in the score space~i.e., the current best and its antico
related partner, the worst! at a point in the game. For thes
strategies, Eq.~9! is given approximately by

^dSR&m'2 (
R851

2P

~C= R,R82C= R̄,R8!

2sgn~SR! (
R851

2P

~C= R,R81C= R̄,R8!.

Irrespective of the disorder inC= , we have udSbiasu
&udSrestoringu. It is thus likely that this strategy pair will at
tract each other until at least one other pair takes their p
as best/worst. This behavior will lead to a nonstationarrI
vector even in this regime.

The present analysis has described general propertie
the game such as the transition in behavior between effic
and inefficient regimes. It has also shown that dynam
processes such as the changing nature ofrI can be quantita-

tively explained purely in terms of the quenched disorder
the strategy population tensorV= .
01610
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IV. DYNAMICS IN m SPACE

The previous section was concerned with the behavio
the strategy-score vectorSI , and often treated the dynamica
variable m as a random process to be averaged over. T
however glosses over the subtle and very interesting dyn
ics of m itself as dictated by Eq.~4!. ~References@10,13# also
consider aspects ofm dynamics.! To aid in our discussion,
we note that Eq.~4! describes a trajectory along the edges
a directed de Bruijn graphD2(m). Figure 4 shows an ex
ample of such a graph form52. As explained in the previous
section, in the efficient regimeSI is strongly mean reverting
This implies that the set of states of the game$SI ,m% is finite.
As the system is Markovian and deterministic, this in tu
implies that it must exhibit periodic behavior in this regim
as return to a past state would then be followed by the re
iting of the trajectory from that state. In the inefficient r
gime where the strategy scores are biased, the set of s
$SI ,m% is unbounded and we may expect aperiodic behav
of the DMG.

We now examine the structure of the periodic behavior
the efficient regime. One observation from numerical sim
lations is that the period, i.e., return time to any state$SI ,m%
is observed over many runs to beT52P for the x5sgn
scoring system whereas for thex51 system the period is
much longer and run dependent. This periodic behav
seems able to exist up to the point where the occurrenc
zero attendanceA(SI ,m)50 causes stochastic disturbance
m @17#; after this point we can no longer treat our system
deterministic. Such periodic behavior must satisfy the con
tions $DScycle50, Dmcycle50%. T52P is in fact the shortest
possible period that satisfies these conditions. The two ed
leading away from any vertexm on the de Bruijn graph mus
necessarily incur score increments of the opposite s
1aI mux(A)u,2aI mux(A)u corresponding to positive and neg
tive attendance, respectively. The vectorsaI m1 and aI m2Þm1

are orthogonal; hence the only way that an increment to
score ofaI m@ t#x(A„SI (t),m(t)…) can be negated in order t
achieveDScycle50, is to return to that vertex~i.e.!, m(t8)
5m(t) a particular number of times such that

FIG. 4. De Bruijn graphD2 @2# corresponding tom52. Vertices
are labeled with the statem, edges are labeled with the quanti
dS/ux(A)u. The dotted line shows one of the two possible Euler
trails of this graph.
5-5
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(
~ t8!

x~A„SI ~ t8!,m~ t !…!50. ~12!

This condition must be satisfied at all vertices of the gra
because the set$t8%, which satisfies Eq.~12! must have a
minimum of two entries ~each of opposite attendanc!
thereby leading the game to different, new vertices until
are spanned.

Consider thex5sgn scoring system. The condition corr
sponding to Eq.~12! is easily satisfied at each vertex with
set $t8% of exactly 2l entries,l being an integer. We now
have the situation where all edges of the graph are vis
equally. The shortest way of doing this is withl51; this
cycle is known as an ‘‘Eulerian trail.’’ This dynamical stab
state of the game acts as an attractor; the MG in the effic
phase will rapidly find this state after undergoing a stocha
disturbance. We note that the time-horizon minority ga
@13# exhibits similar behavior for special values of the tim
horizont. This trajectory of the DMG along a Eulerian tra
corresponds to the occurrence of perfect antipersistenc
the (Aum) time series. This antipersistence has been emp
cally observed in many studies of the MG@1,7,15#.

Now consider thex51 scoring system. The condition o
Eq. ~12! is very much harder to achieve over all vertices
the dynamics ofA are incorporated back into the score vec
SI making the set$SI ,m% very much larger. This explains th
very much longer period of this game, which, even over v
long time windows, can appear aperiodic. The Eulerian t
will still, however, be an attractor to the dynamics withinm
space, since the antipersistence in (Aum) is still strong~in the
efficient phase!. It is not however perfect as was the case
the DMG using thex5sgn scoring system.

To quantitatively explain this antipersistence, we ma
the following approximation:

sgn~A!'sgn~aI •SI !. ~13!

This approximation can be understood by referring back
Eq. ~7! whereSI now plays the same role as the rank meas
qI . It is valid for the regime where the strategy scores
densely spaced, i.e., for the efficient regime/low disorde
C= . Consider thex5sgn scoring system wherein the sco
vector is simply given by SI (t)5SI (0)
2( j 51

t21 sgn„A( j )…aI m( j ). We use the fact that the vectorsaI m1

andaI m2Þm1 are orthogonal to transform Eq.~13! to the fol-
lowing form:

sgn„A~ t !…'sgnS aI m
•SI ~0!22P(

$t8%

sgn„A~ t !…D , ~14!

where we recall that the set of times$t8% are such that
m(t8)5m(t)5m for 0,t8,t. This dynamical process oc
curring over timest8 rather thant is zero reverting. Let us
demonstrate this by taking an example. LetP54 and the
initial strategy score be such thataI mSI (0)520. The time se-
ries of sgn„A(t)… thus becomes as shown in Table II. Hen
the game cascades from its initial state, the attendance
given vertex of the de Bruijn graph (@Aum#) exhibiting per-
sistent behavior until a point is reached such thatuaI m

•SI (0)
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22P($t8% sgn„A(t)…u,2P. Subsequently the attendanc
(Aum) becomes perfectlyantipersistent. When this antiper-
sistence occurs at each vertex, the game has locked into
of the 22m

/2m11 Eulerian trails. The analysis above can
generalized for different scoring systems~such asx51!
where, in general, it is found that the game exhibits stro
but not perfect antipersistence in (Aum) in this regime.

In the analysis above we introduced the effect of the i
tial condition on the score vectorSI (0) ~see also Ref.@14#!.
However, we could just as correctly viewSI (0) as the current
state, left by some other game process such as a shock t
system, a buildup from some other game mechanism o
stochastic perturbation. It is therefore interesting to exam
how the DMG evolves after a given state$SI (0),m(0)% is
imposed. The ‘‘initial’’ conditionSI (0) must obey the form
SR52SR̄ ; this is to ensure thata priori no strategies are
given a bias. It would be unphysical to break this rule; str
egyR always loses the same number of points as its antic
related partnerR̄ gains in any reasonable physical mech
nism. We expect that if the elementsSR(0) have magnitude
less than 2P, then the system will very quickly lock into the
Eulerian trail trajectory and visit allm states equally. How-
ever, if the elementsuSR(0)u@2P then Eq.~14! predicts that
there will be persistence in (Aum) until the dynamical stable
state is found. This persistence in trajectory at each nod
the de Bruijn graph will lead to the game visiting only
small subset of the vertices on the graph unlike in the sta
state situation. This reduced cycling effect may lead to a b
in the attendance over a significant period of time, i.e.
‘‘crash’’ or ‘‘rally.’’

We now demonstrate the recovery of the DMG from
randomly chosen initial score vectorSI (0). Wetake a system
with low disorder inC= andm52 ~such that 2P58!. How-
ever, we drawSR(0) from a much wider uniform distribution
spanning2100 to 100.~Note we maintainSR52SR̄ as re-
quired.! Figure 5 shows the evolution of the game out of th
state. The initial condition is soon ‘‘worked out’’ of the
system—it rapidly finds the Eulerian cyclem
50,0,1,3,3,2,1,2, . . . , after only 174 turns. As can also b
seen, the game adopts several different types of cycles o
way towards this stable state. The switch between cy
types occurs as each vertex snaps from persistent to ant
sistent behavior.

We have hence discussed and explained the dynamic

TABLE II. An example of how the game cascades from
initial state@cf. Eq. ~14!#. HereP54 andaI m

•SI (0)520. The atten-
dance ~right column! exhibits persistent, and then antipersiste
behavior.

am
•S(0)22PS$t8%sgn„A(t8)… sgn„A(t)…

20283(0)520 1
20283(011)512 1
20283(01111)54 1
20283(0111111)524 21
20283(011111121)54 1
20283(01111112111)524 21
5-6
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the stable state and how the system enters that state fro
initial or perturbed state. This analysis has been done for
system in the efficient phase where the quenched disord
C= is low. The inefficient regime will, in general, show
different set of dynamics. As discussed earlier, the ineffici
phase is characterized by score vectors that have an a
ciable drift; this is an effect of the disorder inC= . The corre-
sponding unboundedSI (t) vector leads to an unbounded s
of states for the system$SI ,m%. This suggests that the overa
dynamics may be aperiodic, i.e., the system never return
a past state. We can however say something about the n
of the resulting dynamics inm space. As the score vecto
diverges the score rank vectorrI becomes more well define

~although not completely stationary in time, as mentioned
Sec. III!. This is tantamount to there being a certain deg
of persistence in the attendance at a vertex (Aum). This will
lead to the motion around the de Bruijn graph being limit
to a certain subspace, just as that described above for

FIG. 5. An example of the convergence of the DMG onto t
Eulerian trail attractor. Top graph shows the dynamics in the glo
informationm(t). Bottom graph shows the dynamics in scoreSR(t)
for 1<R<4 ~out of 2P58!. Game locks into attractor at turn 174
Game parametersN5101,m52, s52.
v.
,

t o
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recovery from an initial score vectorSI (0). This difference in
the dynamics for the efficient and inefficient regimes leads
the well-documented result that the occurrence of differ
(m11) bit words is even in the efficient regime but ve
uneven in the inefficient regime@7#.

V. CONCLUSION

The results in this paper confirm that the MG can be u
fully viewed as a stochastically disturbed deterministic s
tem, and that this deterministic system can be described
cisely by coupled mapping equations@Eqs.~3!, ~4!, and~5!#.
We used this system to explore the dynamics of the sc
vectorSI (t). We showed that the score increment comprise
bias and restoring-force term, the comparative magnitude
these terms being governed by the disorder in the stra
population tensorV= . Furthermore, we were able to obta
analytic approximations for the bias and restoring-for
terms. We showed how the market impact effect correla
the strategy population to the score vector and how this t
affected our approximations.

We also discussed the dynamics of the global informat
m(t) as a trajectory on a de Bruijn graph. We were able
show that in the efficient regime the system would be pe
odic and that the favored periodic trajectory was that of
Eulerian trail. Analytically we were able to demonstrate ho
antipersistence and persistence arise in the attendance
vertex (Aum), and how this would manifest itself in efficien
and inefficient regimes either in response to a perturbed s
or an initial condition ofSI (0).

In short, this analytic treatment has not only again e
plained why MG systems cross over from efficient to inef
cient behavior~this effect was explained here simply i
terms of the quenched disorder and in absence of the t
modynamic limit!, we have also shown how it is possible
unravel the rich dynamics and explore effects that hap
within a given realization of the system and not simply
average. The analytical treatment of this work may also
easily used to investigate extensions to the model. For
stance, the ‘‘grand-canonical MG’’@5#, used as a model fo
the financial markets, represents a minimal alteration to
~5!. By using the same techniques as presented here we
investigate effects in this modified model such as how la
drawdowns occur and how stability and volatility are e
fected by both parameter choice and external perturbatio
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